Agrobacterium tumefaciens increases cytokinin production in plastids by modifying the biosynthetic pathway in the host plant.

نویسندگان

  • Hitoshi Sakakibara
  • Hiroyuki Kasahara
  • Nanae Ueda
  • Mikiko Kojima
  • Kentaro Takei
  • Shojiro Hishiyama
  • Tadao Asami
  • Kazunori Okada
  • Yuji Kamiya
  • Tomoyuki Yamaya
  • Shinjiro Yamaguchi
چکیده

Agrobacterium tumefaciens infects plants and induces the formation of tumors called "crown galls" by integrating the transferred-DNA (T-DNA) region of the Ti-plasmid into the plant nuclear genome. Tumors are formed because the T-DNA encodes enzymes that modify the synthesis of two plant growth hormones, auxin and cytokinin (CK). Here, we show that a CK biosynthesis enzyme, Tmr, which is encoded by the Agrobacterium T-DNA region, is targeted to and functions in plastids of infected plant cells, despite having no typical plastid-targeting sequence. Evidence is provided that Tmr is an adenosine phosphate-isopentenyltransferase (IPT) that creates a new CK biosynthesis bypass by using 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate (HMBDP) as a substrate. Unlike in the conventional CK biosynthesis pathway in plants, trans-zeatin-type CKs are produced directly without the requirement for P450 monooxygenase-mediated hydroxylation. Consistent with the plastid localization of Tmr, HMBDP is an intermediate in the methylerythritol phosphate pathway, a plastid-localized biosynthesis route for universal isoprenoid precursors. These results demonstrate that A. tumefaciens modifies CK biosynthesis by sending a key enzyme into plastids of the host plant to promote tumorigenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural insight into the reaction mechanism and evolution of cytokinin biosynthesis.

The phytohormone cytokinin regulates plant growth and development. This hormone is also synthesized by some phytopathogenic bacteria, such as Agrobacterium tumefaciens, and is as a key factor in the formation of plant tumors. The rate-limiting step of cytokinin biosynthesis is catalyzed by adenosine phosphate-isopentenyltransferase (IPT). Agrobacterium IPT has a unique substrate specificity tha...

متن کامل

Identification of a cloned cytokinin biosynthetic gene.

A small region of the Ti plasmid (the tmr locus), thought to be involved in phytohormone metabolism in Agrobacterium tumefaciens-transformed plant tissue, was cloned and expressed in Escherichia coli. By enzyme assay, the tmr locus was shown to encode isopentenyltransferase, an enzyme that catalyzes the first step in cytokinin biosynthesis.

متن کامل

Overproduction of cytokinins in petunia flowers transformed with P(SAG12)-IPT delays corolla senescence and decreases sensitivity to ethylene.

Plant senescence is regulated by a coordinated genetic program mediated in part by changes in ethylene, abscisic acid (ABA), and cytokinin content. Transgenic plants with delayed senescence are useful for studying interactions between these signaling mechanisms. Expression of ipt, a cytokinin biosynthetic gene from Agrobacterium tumefaciens, under the control of the promoter from a senescence-a...

متن کامل

The role of the ubiquitin-proteasome system in Agrobacterium tumefaciens-mediated genetic transformation of plants.

Agrobacterium tumefaciens-mediated genetic transformation of plants is the first example of transkingdom gene transfer and had been considered the only known natural example of such a case until the recent discovery of Bartonella henselae-mediated transformation of human cells under laboratory conditions (Schröder et al., 2011). In nature, the pathogenic soil bacterium A. tumefaciens induces ne...

متن کامل

Cell-autonomous cytokinin-independent growth of tobacco cells transformed by Agrobacterium tumefaciens strains lacking the cytokinin biosynthesis gene.

Mutations at the cytokinin biosynthesis locus (tmr) of Agrobacterium tumefaciens usually result in strains that induce tumors exhibiting the rooty phenotype associated with high auxin-to-cytokinin ratios. However, tobacco (Nicotiana tabacum cv Havana 425) leaf disc explants responded to tmr- mutant strain A356 by producing rapidly growing, unorganized tumors, indicating that these lines can gro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 28  شماره 

صفحات  -

تاریخ انتشار 2005